
Nagios Log Server - Full Architecture Overview
Article Number: 98 | Rating: Unrated | Last Updated: Thu, Jul 28, 2016 at 4:29 PM

High-Le ve l Ove r v ie w
Nagios Log Server is an application that provides organizations a central location to send their machine generated event data (e.g., Windows Event Logs, Linux syslogs, mail server logs, web server logs, application logs) which will index the content of the messages, and
store the data for later retrieval, querying, and analysis in near real-time.

Once log data has been indexed (indexing usually happens within 5 seconds from arrival) it can be easily analyzed using the graphical query and filtering tools on the dashboard. Log Server includes a quick search utility which will search for any log event item on Google,
Bing, or Stack Overflow. Alerts can be created based on a query, and are able to be sent via email to users of your choice. Alerts can also be sent to Nagios XI/Nagios Core via NRDP, start a Nagios Reactor event chain, send a SNMP Trap, or even start a custom script.

The data that is sent to Nagios Log Server can be automatically archived to a shared network drive. The archived data can be restored and re-analyzed at any point in the future.

What that means in plain English is that it can be used to record any log events that are happening across all of the machines and network devices organization-wide. Users of Log Server can access all of this data in a central location, searching it through the UI. Having all
of the data in one location has the benefit of being able to compare or correlate log data from multiple devices. Also, the automated archiving of the log data will assist in maintaining compliance with certain standards which require log data to be stored for various
amounts of time.

Mo s t C ommon Us e C a s e

An obvious application where Log Server could be used would be as an advanced system to analyze the received logged events and send important items (e.g. Critical Errors or security related items) to Nagios Core or Nagios XI.

Le s s C ommon Us e C a s e s

Developers can send debug logs to Log Server, and easily filter out the information that isn't important leaving just the key items of interest.

Organizations can utilize the graphical and analytic capabilities of Log Server to analyze web server logs, not only for errors, but to determine what are the most requested pages, the geo- location of their vis itors, popular browsers and more.

With a small script, users could archive Nagios XI or Core check results including performance data, and have the ability to set up custom dashboards visualiz ing the data however they wish (table, bar graph, pie chart, etc..)

 Log Server could be used to index and archive messages from an IMAP mailbox, for security or historical reference.

 Log Server can also receive SNMP traps, again allowing all of the previous functionality on the traps received.

The Be ne fits o f Na g io s Log Se rve r Ove r Te xt- Ba s e d Sys te ms

Nagios Log Server allows all of your organization's machine generated data to be stored and indexed in one central location, allowing for queries to be performed on all of the log data at the same time providing the ability for correlative analysis. Additionally, this data can
be presented to the user running the query in customized views called dashboards, including a table of results, bar charts, pie charts, line graphs, etc. for any of the fields of data. Additionally, fields in the logs that are determined to be numeric can have calculations done
when creating/using the graphing/table functionality to provide data like total, min, max, mean, etc.

Impo r t ant Te rms and Vo cabula r y

Nagios Log Server is a combination of three different open-source components: Elasticsearch, Logstash, Kibana. (ELK)

Ela s tic s e a rc h: The scalable and redundant datastore used by Log Server.

Log s ta s h: The log receiver for Log Server – Logstash outputs logs to the Elasticsearch database.

Kiba na : The visualization component of the ELK stack – it is used to produce dashboards, made up of tables, graphs, and other elements.

Ela s tic s e a rc h , Log s ta s h , and Kiba na work together to ultimately produce log visualizations.

C lus te r: A Cluster is composed of two or more instances. "Cluster" is the term used to refer to all of the instances at once, working together. (e.g. The cluster is operating at wonderful speeds.)

Ins ta nc e : A single installation of Nagios Log Server. Several connected instances make up a cluster. Typically instances are installed on separate virtual or physical machines.

Inde x: You can think of an index like a typical relational database. Indices are responsible for mapping to primary and replica shards. An index must map to one or more primary shards, and zero or more replica shards.

Sha rd : A shard is a low-level 'worker' which is managed by Elasticsearch. A shard can be primary or a shard can be a replica. By default, ten shards make up every index – five primary and five replica.

P r ima ry Sha rd : Every log entry in Nagios Log Server is stored in a primary shard. After the shard has been indexed on the primary shard, it is duplicated to a replica shard. In this way, redundancy is created.

Re p lic a Sha rd : By default, each primary shard (5) has a replica shard (5), making up a total of (10) shards. A replica shard is s imply a copy of a primary shard, and is always stored on a separate instance. This serves a few purposes – first, it allows for high
availability. If a primary shard goes down, a replica shard will exist and be capable of taking the role of the missing primary shard. Replica shards are also suitable for performance enhancement – primary and replica shards can serve information simultaneously.
node you add to the Nagios Log Server cluster improves performance.

Ho w Nagio s Lo g Se r ve r dif f e r s f r o m t he ELK s t ack

Nagios Log Server (NLS) comes pre-configured for optimal performance, so system administrators can spend more time producing log visualizations, and less time tuning their machines.

NLS is fully supported by Nagios support staff - by phone, email, or forum.

NLS comes with authentication and security built- in. Typically, the ELK stack is open to whoever wants to query it – meaning that system administrators need to spend time developing protection methods for the ELK stack. Nagios Log Server comes with built- in security
and authentication.

NLS has an alert system built in - you are capable of alerting based on log queries via email. It can also tie in with several other Nagios products, including Nagios XI and Nagios Reactor. This integration allows for complex responses to log events.

In general, NLS reduces management overhead and complexity of the ELK stack, and includes built- in security and alerting.

Unde r s t anding Elas t ic s e a r ch

Elasticsearch is a transparent component – it does not need a lot of tuning, especially if your cluster is small.

Elasticsearch is the database of choice because it is distributed and redundant by default. Every time an instance is added to your cluster, Elasticsearch ensures that its database is spread across all nodes appropriately by moving around the various shards in a manner
that increases the resiliency of the data.

In the above picture, there are two instances joined in a single cluster. Each instance contains two primary shards (colored blue) and two replica shards (colored red). Note that Elasticsearch will never assign a matching primary shard and replica shard to the same
instance, which is how high availability is achieved.

Unde r s t anding Lo gs t as h

Logstash is the most complex component in Nagios Log Server that an administrator will have to deal with. It is imperative that a good understanding of logstash is developed. The logstash agent is a processing pipeline with 3 stages:
receive incoming logs, and pass those logs to the filter chain, filters modify them, outputs ship them elsewhere - in our case, to the elasticsearch database.

Inputs

Inputs listen for incoming logs. The three most common inputs by far are TCP, UDP, and syslog. The tcp input will listen on a specified TCP port, and accept any logs coming in on that port. The UDP input will do the same, but it will listen on a UDP port. The syslog input is
where things get a little more complex - every log that comes into the syslog input will automatically have the 'syslog' filter applied. For reference, the syslog filter is a s imple grok filter that looks like this:

"match" => { "message" => "<%{POSINT:priority}>%{SYSLOGLINE}"

For additional information on inputs, the elasticsearch documentation is valuable: https://www.elastic.co/guide/en/logstash/current/plugins- inputs-elasticsearch.html

Filte rs

Filters are the most complex and important part of the Logstash chain. If you spend time learning anything, learn filters. It will help if you have a background in regular expression. Regular expression syntax doesn't take very long to learn, and it is tremendously helpful when
generating your own filters. There are many free tutorials online to learn from.

Logstash filters parse logs passed down from the input chain to 'filters ' that you define. Before filters are applied, your logs are likely unstructured and have no 'fields' applied to them. After filtering, you might see fields like the following.

Fields are important because they enable the creation of graphs and visualizations:

Outputs

By default, our output is responsible for exporting data to elasticsearch. You can also define custom outputs to do many other things - from sending alerts to Nagios via the Nagios output

Lo gs t as h Example Co nf igur a t io n

The best way to explain Logstash is by example. In this example, we will be using a basic 'tcp' input and the 'grok' filter - this is a widely-used filter. Grok is a filter that matches regex patterns. I recommend that you read more about the 'grok' filter
here: https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

First, we define an input to take logs in. For the sake of s implicity, the following input will be used:

tcp {
 type => 'exampletype'
 port => 9001
}

You can add this configuration to the Web GUI quite easily:

Be sure to 'Save & Apply' when you are finished. You will have to open the appropriate firewall port on Nagios Log Server.

Now, we'll start sending logs to Logstash from our remote host. Once a log arrives, you will see it displayed in the Web GUI as unstructured information, like so:

https://www.elastic.co/guide/en/logstash/current/output-plugins.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-nagios.html
https://www.elastic.co/guide/en/logstash/current/plugins-outputs-hipchat.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

Logstash will attach certain fields by default - @timestamp, @version, _id, _index, _type, etc. were all generated automatically. The bulk of the sent information is located in the 'message' field.

At this point, the question to ask is what information in the 'message' field is relevant to you. Since I don't know this, I will define this filter by my standards - you are of course free to modify my work. This grok filter will take what is inside of the 'message' field and sort that
information into appropriate fields.

The grok debug utility makes our work rather s imple. I also like to keep the grok patterns at hand when defining a filter.

After debugging your log message appropriately, you will wind up with a grok pattern. A very basic grok pattern (developed in a few minutes) is as follows:

\[%{DAY:day} %{MONTH:month} %{MONTHDAY:monthday} %{TIME:time} %{YEAR:year}\] \[%{WORD:status}\] \[client %{IP:client}\] %{GREEDYDATA:information}, referer: %{GREEDYDATA:url}

In this pattern, I have tagged what is important with fields. Note that anything in CAPITAL letters is s imply a pre-defined regex pattern that grok provides. After the colon comes the field that I want it tagged as - this is how the information will show up in your Web GUI. Any
integer that I want to graph, I need to use the :int suffix on. An int pattern might look something like:

%{NUMBER:loginretries:int}

Now we need to put this pattern into a filter. Let's quickly define a grok filter:

if [type] == "exampletype" {
 grok {
 match => ["message", "\[%{DAY:day} %{MONTH:month} %{MONTHDAY:monthday} %{TIME:time} %{YEAR:year}\] \[%{WORD:status}\] \[client %{IP:client}\] %{GREEDYDATA:information}, referer: %{GREEDYDATA:url}"]
 }
}

Once implemented, anything matching 'exampletype' will be passed through this filter. In our case, the input automatically tags everything coming in as 'exampletype'. The end result can be seen below.

http://grokdebug.herokuapp.com
http://grokdebug.herokuapp.com/patterns

Ultimately, we can generate beautiful Kibana visualizations using these new fields.

Additional filters can be found here: https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

Tro uble s ho o t ing Co mmands

These are the commands that are most often used to troubleshoot misbehaving clusters:

Ge ne r ic Info rma tio n Ga the r ing

Master:

curl 'localhost:9200/_cat/master?v'

https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

curl 'localhost:9200/_cat/master?v'

Nodes:

curl 'localhost:9200/_cat/nodes?v'

Pending tasks:

curl 'localhost:9200/_cat/pending_tasks?v'

Recovery:

curl -XGET 'localhost:9200/_cat/recovery?v'

Running plugins:

curl 'localhost:9200/_cat/plugins?v'

Cluster basic health:

curl -XGET 'http://localhost:9200/_cluster/health?pretty=true'

Check jvm settings:

curl -XGET localhost:9200/_nodes/jvm?pretty

Ha il Ma ry Info rma tio n Ga the r ing

Shard status (use index status instead for clarify, in most cases):

curl -XGET http://localhost:9200/_cat/shards

Cluster state:

curl -XGET 'http://localhost:9200/_cluster/state?pretty'

Shard health (index health works better in most circumstances):

curl -XGET 'http://localhost:9200/_cluster/health/*?level=shards'

Re d C lus te r Re c o ve ry

Check index health:

curl 'localhost:9200/_cluster/health?level=indices&pretty'

Shard list:

curl -s localhost:9200/_cat/shards

Unassigned shards:

curl -s localhost:9200/_cat/shards | grep UNASS

Delete bad index:

curl -XDELETE 'http://localhost:9200/twitter/'

Ac tive Troub le s hoo ting C omma nds

Tail maintenance logs:

tail -f /usr/local/nagioslogserver/var/jobs.log

Tail poller logs:

tail -f /usr/local/nagioslogserver/var/poller.log

Shut down all nodes:

curl -XPOST 'http://localhost:9200/_shutdown'

Check users:

curl -XGET 'http://localhost:9200/nagioslogserver/_search?type=user&pretty'

Ba c kup Troub le s hoo ting C omma nds

Check running knapsack export:

curl -XPOST 'http://localhost:9200/_export/state'

Typically jobs.log should be tailed and the backup+maintenance command should be forced from the subsys - jobs.log should complain about a partial snapshot.

Delete a snapshot (versions <= 1.3.0):

curator delete --older-than 1 --prefix logstash-2015.05.19 (replace with snapshot name)

(versions >= 1.3.0):

curator delete snapshots --repository nlsbackup --prefix (replace with snapshot prefix)

 You can also delete snapshots from the Web GUI under the backup page, or directly from the repo.

Purpo s e - Dr ive n C omma nds

Check min master nodes:

Check min master nodes:

curl localhost:9200/_cluster/settings?pretty

Set min master nodes:

curl http://localhost:9200/_cluster/settings -XPUT -d '{ "persistent": { "discovery.zen.minimum_master_nodes": 2} }'

Check users:

curl -XGET 'http://localhost:9200/nagioslogserver/_search?type=user&pretty'

Impo r t ant File s and Dir e c t o r ie s

elasticsearch.yml = /usr/local/nagioslogserver/elasticsearch/config/elasticsearch.yml

This file is responsible for low-level Elasticsearch configuration.

logging.yml = /usr/local/nagioslogserver/elasticsearch/config/logging.yml

This file can be used to set logging levels in the case that Elasticsearch needs to be debugged.

elasticsearch = /etc/sysconfig/elasticsearch

This file is responsible for high- level Elasticsearch configuration.

logstash = /etc/sysconfig/logstash

This file is responsible for high- level Logstash configuration.

cluster_hosts = /usr/local/nagioslogserver/var/cluster_hosts

This file contains the IP addresses of all known instances in the cluster, in addition to 'localhost'. If you are having issues with node vis ibility, this is a good file to check.

cluster_uuid = /usr/local/nagioslogserver/var/cluster_uuid

This file contains a unique string used to identify the cluster. This file should be the same across all instances in the cluster.

Fina l Tho ught s

For any support related questions please vis it the Nagios Support Forums at:

http://support.nagios.com/forum/

Posted by: jo ls o n - Thu, Jun 4, 2015 at 4:01 PM. This article has been viewed 2547 times.

Online URL: https://support.nagios.com/kb/article.php?id=98

http://support.nagios.com/forum/
http://support.nagios.com/forum/
https://support.nagios.com/kb/article.php?id=98

	Nagios Log Server - Full Architecture Overview
	Final Thoughts

